Unfreezing Casimir invariants: singular perturbations giving rise to forbidden instabilities

نویسندگان

  • Z. Yoshida
  • P. J. Morrison
چکیده

The infinite-dimensional mechanics of fluids and plasmas can be formulated as “noncanonical” Hamiltonian systems on a phase space of Eulerian variables. Singularities of the Poisson bracket operator produce singular Casimir elements that foliate the phase space, imposing topological constraints on the dynamics. Here we proffer a physical interpretation of Casimir elements as adiabatic invariants —upon coarse graining microscopic angle variables, we obtain a macroscopic hierarchy on which the separated action variables become adiabatic invariants. On reflection, a Casimir element may be unfrozen by recovering a corresponding angle variable; such an increase in the number of degrees of freedom is, then, formulated as a singular perturbation. As an example, we propose a canonization of the resonant-singularity of the Poisson bracket operator of the linearized magnetohydrodynamics equations, by which the ideal obstacle (resonant Casimir element) constraining the dynamics is unfrozen, giving rise to a tearing-mode instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD equilibrium variational principles with symmetry

The chain rule for functionals is used to reduce the noncanonical Poisson bracket for magnetohydrodynamics (MHD) to one for axisymmetric and translationally symmetric MHD and hydrodynamics. The procedure for obtaining Casimir invariants from noncanonical Poisson brackets is reviewed and then used to obtain the Casimir invariants for the considered symmetrical theories. It is shown why extrema o...

متن کامل

Small-scale instabilities in dynamical systems with sliding

We demonstrate with a minimal example that in Filippov systems (dynamical systemsgoverned by discontinuous but piecewise smooth vector fields) stable periodic motionwith sliding is not robust with respect to stable singular perturbations. We considera simple dynamical system that we assume to be a quasi-static approximationof a higher-dimensional system containing a fast sta...

متن کامل

A hierarchy of noncanonical Hamiltonian systems

The dynamics of an ideal fluid or plasma is constrained by topological invariants such as the circulation of (canonical) momentum. In the Hamiltonian formalism, topological invariants restrict the orbits to submanifolds of the phase space. While the coadjoint orbits have a natural symplectic structure, the global geometry of the degenerate (constrained) Poisson manifold can be very complex. Som...

متن کامل

Casimir pistons with hybrid boundary conditions

The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that confine the massless scalar field is reexamined for one to three-dimensional pistons in this paper. Especially, we consider Casimir pistons with hybrid boundary conditions, where the boundary condition on the piston is Neumann and those on other surfaces are Dirichlet. We show that the C...

متن کامل

Assessment of the Effects of Azimuthal Mode Number Perturbations upon the Implosion Processes of Fluids in Cylinders

Fluid instabilities arise in a variety of contexts and are often unwanted results of engineering imperfections. In one particular model for a magnetized target fusion reactor, a pressure wave is propagated in a cylindrical annulus comprised of a dense fluid before impinging upon a plasma and imploding it. Part of the success of the apparatus is a function of how axially-symmetric the final pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013